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‘‘Partial pressures’’ supported by granulometric classes in polydisperse granular media
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A packing of particles subjected to an œdometric compression displays a large distribution of inter-
particle contact forces. The latters are correlated with the particle size. Using the principle of virtual work,
we relate the ‘‘partial’’ pressure supported by a granulometric class of particles to a purely geometrical
problem, namely, the solid fraction of a polydisperse granular medium as a function of its granulometry. We
apply in particular this result to the case of bimodal packings and we show that the partial pressure is larger for
the small particles in three dimensions, whereas a size independence is predicted in two dimensions. Two- and
three-dimensional numerical simulations confirm these results.@S1063-651X~98!07304-8#

PACS number~s!: 83.70.Fn, 01.55.1b, 07.05.Fb, 46.10.1z
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I. INTRODUCTION

Photoelastic visualizations of two-dimensional~2D! @1–3#
and three-dimensional~3D! @4# granular systems provid
striking evidence of the heterogeneous distribution of int
granular stresses in a granular system on a scale defin
larger than the typical particle size@5–7#. This motivated
some recent works devoted to the analysis of the statis
distribution of interparticle forces@7–12#. Apart from this
basic level of description, the statistical correlation of the
forces in the medium still requires a detailed analysis.
present a step in this direction, from the analysis of the c
relation between the force at a contact and the particle s

It is of uttermost importance to have a faithful descripti
of this geometrical organization for processes like parti
fragmentation. Indeed, it is well known that a small amou
of recycling of small particles in a crushing device leads
an increased efficiency of crushing. Although this questio
directly related to the local stress distribution around the p
ticle, no satisfactory understanding is yet available on t
point and the recycling rate is based on empirical rules.

In this paper we are particularly interested by the lo
pressures supported by the particles within a polydispe
packing. One interesting question is how these local p
sures depend on the grain sizes when external forces
applied. Assuming that each contact force is identical to
others, Helleet al. @13# used the principle of virtual work to
determine the average contact force between iden
spheres subjected to a remote pressure as a function of
mean coordination number, and relative density. From
similar principle, we develop a theoretical model@14# that
relates the ‘‘partial’’ pressures supported by granulome
classes of particles to a purely geometrical problem, nam
the determination of the solid fraction as a function of t
granulometry. As a side product, it allows us to deduce
mean normal force of one contact on a grain as a functio
the external pressure and the mean coordination numbe

In order to validate this theoretical model, two- and thre
dimensional numerical simulations based on molecular
namics~MD! method with elastic interactions between t
grains have been performed for various combinations
grain sizes and granulometric class proportions. For a ra
571063-651X/98/57~4!/4458~8!/$15.00
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of external pressures applied on each sample, we numeric
determine the solid fraction, the coordination number,
mean normal force of one contact on a grain, and the pa
pressures supported by the granulometric classes. We c
pare the theoretical prediction with these numerically de
mined results. The range of external pressures is chose
that the density of the packing varies by about 6.5%.

In Sec. II, we introduce the theoretical model and w
present the predicted results on the partial pressures in
ticular for bidisperse packings; in Sec. III, we briefly prese
the simulation method and we compare the numerical res
with those of the theoretical model; in Sec. IV, we discu
the limits of the model.

II. THEORETICAL MODEL

A. Description

Let us consider a packing ofN spherical or cylindrical
grains with a statistical distribution,f (x), such thatN f(x)dx
is the number of particles whose diameter lies in the ra
@x,x1dx#. The packing is supposed dense with a spa
homogeneous distribution of particles.

We introduce the mean particle volumen̄,

n̄5SdE
0

`

xdf ~x!dx, ~1!

whereSd is the volume of a unit diameter sphere ind dimen-
sions, i.e.,S25p/4 andS35p/6.

We take an interest in the mean pressure~partial pres-
sure!, ^p(x)&, supported by a grain of diameterx when ex-
ternal forces are applied on the packing.^p(x)& is defined as
the ratio of the sum of normal contact forces on the partic
of diameterx, divided by their areas,

^p~x!&5
K( Fini L

Adxd21
, ~2!

whereFi is the contact force at pointi , ni the external nor-
mal at this point, andAd the area of a unit diameter sphere
4458 © 1998 The American Physical Society
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57 4459‘‘PARTIAL PRESSURES’’ SUPPORTED BY . . .
d dimensions,A25A35p. Note thatAd52dSd . The sum
between angular brackets is applied on all contactsi of a
particle of diameterx, and the angular brackets represent
average on all such particles.

In order to have access to this partial pressure^p(x)&, we
use the principle of virtual work. Let us imagine an infin
tesimal virtual transformation such that theNd f (x) particles
of diameterx are dilated to a diameterx1dx. The internal
virtual work dWi of the contact forces on these particles
expressed as

dWi5SdNd f ~x!^p~x!&xd21dx. ~3!

In this transformation, the global packing volume expan
by dV and the workdWe of the external pressurePext is
given by

dWe5PextdV. ~4!

The packing volume is

V5
Nn̄

c
, ~5!

wherec is the density of the packing. We introduce here
essential hypothesis: the solid fraction is assumed to b
known functional of the granulometric distribution,

c5C@ f #. ~6!

Thus the virtual transformation previously introduc
leads to a variationdc of density obtained from the abov
functional. We do not present here any new results on
density calculation but rather refer to previous studies of
literature@15–17#.

By differentiation, we obtain the global volume variatio

dV5
Nn̄

c S dn̄~x!

n̄
2

dc

c D , ~7!

where

dn̄~x!5dSdxd21dxd f . ~8!

The principle of virtual work allows us to write the equa
ity dWi5dWe and we obtain the following key result:

^p~x!&
Pext

5
1

cS 12
n̄

c

dc

dn̄~x!
D , ~9!

where the left-hand side~lhs! contains the partial pressure w
wanted to compute whereas the right-hand side~rhs! is a
purely geometrical quantity.

From this general result, we can easily deduce the m
normal force^Fn& of one contact applied on a grain of th
packing,

^Fn&5
Ad^x

d21&Pext

n̄c
b, ~10!

wheren̄ is the mean coordination number and
n

s

n
a

e
e

an

b5E
0

`S 12
n̄

c

dc

dn̄~x!
D f ~x!dx. ~11!

Note that, for the monodisperse packings (f 50 or f 51), we
havedc/dn̄(x)50 andb51; thus we recover the relatio
proposed by Helleet al. @13#,

^Fn&5
p^xd21&Pext

n̄c
. ~12!

These results relate the partial pressure supported by a gr
lometric class of particles to a purely geometrical proble
i.e., the change of solid fraction as a function of an infin
tesimal transformation.

B. Particular case of a bimodal distribution

In order to illustrate the preceding results, we consider
case of a bimodal distribution wherex only takes two values
x1 andx2. We definea[x1 /x2 with the conventiona,1.

Let f 15 f the numerical proportion of small grains~diam-
eter x1), and thereforef 2512 f the proportion of large
grains. In the present case, the solid fraction is defined
function of the size ratioa and the numerical proportionf ,

c5c~ f ,a!, ~13!

i.e., c depends only of size ratio and not absolute siz
Hence, the application of preceding results on the par
pressures leads to the following expressions,

^p~x1!&
Pext

5
1

c S 12
an̄

cdSdx1
df

]c

]a D ,

^p~x2!&
Pext

5
1

c S 11
an̄

cdSdx2
d~12 f !

]c

]a D , ~14!

and

b511
a~ad21!@ f 1~12 f !ad#

d

] logc

]a
. ~15!

These expressions can be simplified when we introduce
volume fractionsj5 f Sdx1

d/ n̄ for the small grains and (1
2j) for the large ones.

From now on, we must argue differently depending on
spatial dimensiond of the system.

As a matter of fact, the density of three-dimensional
modal systems depends crucially of the size ratio and
numerical proportion of each granulometric class. Givena,
the density as a function of the proportionf generally dis-
plays a sharp maximum for an optimal proportionf * (a)
with a kink near of this maximum. Decreasing the ratioa,
this maximum increases~recall thata,1 conventionally!.
This behavior is bounded bya.ac where ac'1/6 is the
critical ratio above which the small grains can fit inside t
neck formed by three large grains in contact. In this cas
segregationtakes place when the proportionf becomes less
than the minimum required for filling the pore space of t
large particles. Thus, as long asa.ac , ]c/]a is negative
and the parameterb.1. We deduce that@see Eq.~14!# the
smaller grains support a higher pressure than the larger
in three dimensions.
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4460 57TSOUNGUI, VALLET, CHARMET, AND ROUX
In two dimensions, the situation is very different. Expe
mental results@17,18# provide evidence for a quasiconsta
density as a function of the ratioa and the compositionf .
Therefore]c/]a'0 andb→1, from what we deduce tha
the partial pressure are equal for both types of particles,
^p(x1)&5^p(x2)&5Pext/c.

C. Application using Ouchiyama-Tanaka model

Ouchiyama and Tanaka have developed a purely theo
ical model predicting the density of three-dimensional po
disperse granular media as a function of the statistical di
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bution of particle size,f (x). Being general, this model ca
be used to the particular case of a bimodal distribution. T
principle of this model is based on a geometrical se
consistent computation. It provides a good approximation
long as there is nomacropore— i.e., pore spaces whos
sizes are larger than the mean particle diameter^x& — in the
packing. The hypothesis and calculations are detailed in
original reference@16#.

We use this model to predict the evolution of partial pre
sures as a function of the granulometry. In the particular c
of a bimodal distribution the solid fraction is given by
c5
f x̄1

31~12 f ! x̄2
3

~12 f !~ x̄221!31~1/h!@ f ~ x̄111!31~12 f !@~ x̄211!32~ x̄221!3##
~16!

with

h511
4

13
~8co21!

f ~ x̄111!2@12 3
8 1/~ x̄111!#1~12 f !~ x̄211!2@12 3

8 1/~ x̄211!#

f x̄1
31~12 f !@ x̄2

32~ x̄221!3#
, ~17!
on
res-

cu-

ud-
er
w-
of
med
whereco is the density of a random monodisperse packing
three dimensions, and

x̄15
x1

^x&
5

a

a f 1~12 f !
,

x̄25
x2

^x&
5

1

a f 1~12 f !
. ~18!

From this model, the density variation]c/]a and the
parameterb appearing, respectively, in Eqs.~14! and ~15!
can be found using Eqs.~16! and ~17! and are given in Ap-
pendix A. Givena, this model leads to the theoretical dete
mination of the partial pressureŝ p(x1)&/Pext and
^p(x2)&/Pext as a function of the numerical proportionf .

Figure 1 shows an example of the predicted partial pr
sures in a packing combining our model with th
Ouchiyama-Tanaka density prediction. Givena51/3 and
c050.64, this figure shows the variations of the densityc,
the partial pressureŝp(x1)&/Pext and^p(x2)&/Pext, and the
parametersb and2]c/]a as a function of volume fraction
j of small grains.

We note in this figure that the solid fraction presents
smooth maximum for a small particle volume fraction clo
to 0.2, but a rather small overall variation. A similar sha
albeit with larger variations is obtained for the derivative
this density with respect toa. The relative partial pressure
decrease significantly for a small volume fractionj before
reaching a plateau value forj larger than 0.2 and 0.5 fo
^p(x2)& and ^p(x1)&, respectively. This plateau can be u
derstood as resulting from the weak sensitivity of the den
on the small particle volume fraction.
n

s-

a

f

y

III. NUMERICAL SIMULATIONS

A. Simulation method

We have partially checked these theoretical predictions
the bimodal packings of grains under an œdometric comp
sion, using numerical simulations.

The computer simulations are performed using a mole
lar dynamics~MD! algorithm@19,20#. A detailed description
of the MD method can be found in the literature@21,22#. We
specify a model for the contact forces between grains incl
ing dry friction as detailed below. We use a fifth ord
predictor-corrector algorithm for the integration of the Ne
tonian equations of motion, for the velocity and rotation
each particle. A simple disk or sphere geometry was assu
in two and three dimensions, respectively.

FIG. 1. Variations of the densityc ~n!, the partial pressures
^p(x1)&/Pext ~s! and ^p(x2)&/Pext ~d!, and the parametersb ~L!
and 2]c/]a ~* ! as a function of the volume fractionj of small
grains as computed from the Ouchiyama-Tanaka model.
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In MD simulations contact forces are at play only wh
particles overlap. For two grainsi and j of respective diam-
eter xi and xj in contact, we assume the normal repulsi
contact forceuFel,i j u due to the elastic deformation as direct
proportional to the overlapd i j between two grains as

uFel,i j u5YXnd i j , ~19!

where Xn5xixj /(xi1xj ) is the reduced diameter andY is
the Young modulus and which is chosen large enough so
the overlap is always a small fraction of the grain diame

The elastic deformation of the particles is assumed to
supplemented by aviscousdamping forceFdiss,i j ~related to
the coefficient of restitution!, which is chosen as

Fdiss,i j 52mngnvn , ~20!

where the reduced massmn5mimj /(mi1mj ), gn is a phe-
nomenological damping constant, andvn the normal relative
velocity between two particles. Thus the normal force
given asFn,i j 5Fel,i j 1Fdiss,i j .

Tangential~frictional! force F friction,i j is taken to be pro-
portional to the extension of a tangential springkt as long as
the magnitude of that spring force does not exceed the
tion coefficientm times the normal force. Above this thres
old, a Coulomb friction law is invoked, and the tangent
force remains constant at the value

F friction,i j 52sgn~ds!min~ktds,mFn,i j !, ~21!

whereds is the shear displacement integrated over the en
contact time. In the simulations performed for this study,
coefficient of interparticle friction was chosen at a fix
value ofm50.3. We also included a shear dynamic frictio
force, which in its simplest form can be chosen as

Fshear,i j 52mng tv t , ~22!

whereg t is the shear dynamic friction coefficient andv t is
the tangential relative velocity between the two particl
This force acts as a viscous damping on the absolute r
tional velocities of the particles.

This program has been used to simulate the quasis
evolution of an assembly. The simulated experiments w
performed on packings of 700 disks in two dimensions a
1000 spheres in three dimensions. All these packings ha
bimodal size distribution. Six samples of various combin
tions of grain sizes and granulometric class proportions
presented in Table I.

TABLE I. Numerical proportionf , size ratioa, mean coordina-

tion numbern̄, and solid fractionc in our samplesA, B, C, D, E,
andF before the reloading of the system (Pext'0).

Sample~dimension! f a n̄ c

A(d52) 72.9% 0.40 3.71 0.839
B(d52) 69.2% 0.60 3.64 0.828
C(d52) 85.5% 0.40 3.53 0.834
D(d53) 88.0% 0.50 6.47 0.660
E(d53) 94.9% 0.50 6.53 0.652
F(d53) 96.4% 0.33 6.48 0.675
at
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Disks ~or spheres! are enclosed by a fixed bottom plan
and a top horizontal plane where the vertical displacemen
imposed. Lateral boundary conditions are periodic, and t
the macroscopic strain is simply a uniaxial compress
~œdometric compression!. Figures 2~a! and 2~b! show, re-
spectively, the two- and three-dimensional simulation geo
etry. This geometry guarantees the absence of lateral frict

The construction of the packings takes place under gra
and we add a small random perturbation on the radii to av
crystallization. We make sure that the constructed packi
are dense with a spatial homogeneous distribution of p
ticles. A first external pressurePext is applied on the system
to achieve the consolidation phase. After unloading the s
tem, we again apply a progressive load on top of the sam
and we measure the density, the coordination number,
mean normal contact force, and the partial pressures
ported by the two granulometric classes. Table I shows
quantities of the mean coordination number and the s
fraction inside each sample before the reloading of the s
tem (Pext'0). In order to preserve particle shapes, we ha
only retained the results with low values of global strain.

B. Numerical results

1. Two-dimensional packings

We first present the results obtained in two-dimensio
samples. Figure 3 shows the products of partial pressure

FIG. 2. Geometry of the two-dimensional packing~a! and the
three-dimensional packing~b! used in the numerical simulations
Lateral boundary conditions are periodic.
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the densitŷ p(x1)&c and^p(x2)&c as a function of externa
pressurePext applied on the granular samplesA, B, andC. In
this two-dimensional case we observe these quantities
approximately equal to the external pressurePext. As antici-
pated from the theoretical model in two dimensions we fi
]c/]a'0. Note that, however, the density of the packi
varies by about 6.5% for the range of external pressu
presented here.

We measure the mean normal force^Fn& contact on each
granular system~all classes included!. The previous theoret
ical analysis leads to

^Fn&[
A2^x&Pext

n̄c
b, ~23!

whereA25p andb→1.
Figure 4 shows the variation of the product of the me

normal contact forcê Fn& by the coordination numbern
divided by the mean particle perimeter^Fn&n̄/p^x& as a

FIG. 3. Variations of the products of partial pressures by
solid fraction ^p1&c and ^p2&c as a function of external pressur
Pext applied on the granular samplesA and B in two dimensions.
The dotted line is the theoretical prediction.

FIG. 4. Variations of the product of the mean normal force^Fn&
contact by the coordination numbern̄ divided by the mean particle

perimeter̂ Fn&n̄/p^x& as a function of the ratio of external pressu
Pext over the densityc ~two dimensions!. The dotted line is the
theoretical prediction usingb51.
re

d

s

n

function of the ratio of external pressurePext on the density
c. This figure shows that the slope of the regression thro
the data points tends to 1,b→1, in agreement with the the
oretical prediction~dashed line in Fig. 4!.

These figures show that the theoretical predictions co
pare well with the numerically determined results. They co
firm the independence of partial pressures with the part
size.

2. In three-dimensional packings

Similar analysis has been performed on three-dimensio
packings. We numerically determined the density, the co
dination number, the mean normal force at contact poi
and the partial pressures supported by the granulome
classes. These quantities are compared to the theoretica
dictions. In Fig. 5 we present the products of the par
pressures and the solid fraction^p(x1)&c and ^p(x2)&c as a
function of external pressurePext applied on the granula
sampleD. Contrary to two-dimensional packings~see Fig. 3!
we observe that smaller grains support a higher pressure
the larger ones in three dimensions. This shows that the
tial pressures increase with the external pressurePext as pre-
dicted in Eq.~14!. The same observation holds as well f
the other tested samplesE and F. On this graph, we also
display the prediction obtained from the Ouchiyama-Tana
model, combined with our analysis. We note a good agr
ment for weak external pressures and a slight deviation
stronger external pressures. This discrepancy between
theoretical model and the data points may be a consequ
of the geometrical variations within the samples during
compression, i.e., the establishment of new interparticle c
tacts between grains by local slidings and rollings, and
increase of the density. In fact, the combination of our mo
with the Ouchiyama-Tanaka density prediction does not
low one to account for these variations and considers
geometrical structure of the packing as invariant during
compression.

The mean normal forcêFn& was predicted to amount to

e FIG. 5. Variations of the products of partial pressures by
solid fraction ^p1&c and ^p2&c as a function of external pressur
Pext applied on the granular sampleD ~three dimensions!. The dot-
ted lines are theoretical predictions using the Ouchiyama-Tan
density model.
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^Fn&n̄

p^x2&
5

Pext

c
b. ~24!

Figure 6 is a direct check of this equation, showing the gra
of the lhs of the above equation as a function of the ratio
external pressure on the density. We first observe that
graph is indeed linear, and second, from a global point
view, the slopeb as predicted by the Ouchiyama-Tana
model~shown as a dotted line on the graph! provides a good
description of the numerical data points. In contrast to tw
dimensional packings,b is always greater than 1 and di
plays a rather weak dependence on the particle size ratio
the geometrical variations during the compression.

IV. DISCUSSION

The limitation of our model is due to the hypothesis th
the solid fraction of the piling is uniquely determined by t
granulometry. This in fact can only be regarded as an
proximation, since the granulometry alone does not suffic
determine a solid fraction. Indeed it is well known that und
vibration, a given medium can be compacted by typicall
few percent under optimal conditions. Therefore the m
tioned functionalC @see Eq.~6!# simply does not exist, since
the density depends as well on the sample history.

We are not aware of a more refined theory that allows
to incorporate such a history. In view of the possible de
ciency of this method, and of the approximate nature of
packing model~Ouchiyama-Tanaka theory!, we performed
numerical simulations using a tool that has been extensi
checked over the past 10 years, and that is able to repro
realistic stress-strain behavior. The very good agreemen
tween the predicted partial pressure~based on our result an
Ouchiyama-Tanaka theory, and which does not include
free parameters! and the numerically determined pressur
was enough for us to consider the result as valuable.
though we agree that the final predictions cannot be con
ered as an exact result~it cannot be more exact than th
Ouchiyama-Tanaka theory itself!, it turns out that the ob-

FIG. 6. Variations of the product of the mean normal force^Fn&
contact by the coordination numbern̄ divided by the mean particle

area^Fn&n̄/p^x2& as a function of the ratio of external pressurePext

over the densityc ~three dimensions!. The dotted lines are theore
ical predictions using the Ouchiyama-Tanaka density model.
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tained results are quite satisfactory.
The above point is pragmatic, and does not answer

question of why this agreement is so good in a probl
where one might not have expected such an approach t
applicable. We think that the key has to reside in the orde
magnitude of the effects that are expected. The solid frac
of a granular media with a prescribed granulometry is
unique. However, what is much better defined is the so
fraction after a large shear deformation has been impose
the system, starting from a loose sample so that localiza
effects are avoided. It is quite widely accepted that in t
case the system reaches the so-called ‘‘critical state,’’ wh
is independent of the sample preparation. The solid frac
of the system at the critical state is dependent on the con
ing pressure for deformable particles~e.g., for clays!, but
almost not for stiff particles~e.g., sand! ~and when no plastic
deformation, or breaking occurs!. In this case, the typica
reproducibility of the solid fraction is less than 1%. It
within this framework that the Ouchiyama-Tanaka mod
should be considered. Nevertheless, due to the approxim
nature of the model, the agreement with experimentally
termined compacities is generally worse than 1% err
Therefore at the level of accuracy of the modeling, the cr
cal state solid fraction can be considered as uniquely defin
Similarly, in the numerical simulations, we performed a fi
compaction whose aim is to get closer to the critical sta
and to erase most of the sensitivity to the initial state, or
preparation conditions. We checked numerically that sam
to sample fluctuations were indeed small. On the other ha
as the size ratio of a binary mixture is varied, extremely la
changes of solid fraction are expected. This goes well
yond the history dependent effect.

For monosize packings in two dimensions, it is we
known that a granular packing of disks has a tendency
crystallize into a regular hexagonal array. A slight perturb
tion leads to the formation of ‘‘crystals’’ of large sizes lim
ited by ‘‘grain boundaries.’’ In this case, it appears in o
numerical simulations that the density is a rapidly chang
function of the size ratio and the small particle volume fra
tion when the latter approaches either 0 or 1 (aÞ1). This
contrasts with the general case where the density sho
little evolution with the particle size ratio~i.e., ]c/]a'0).
We did not investigate this case in great detail because of
very large sensitivity of the results on the system size~num-
ber of particles! due to the large size of the ‘‘monocrystals.

Another case that is also ill behaved concerns large p
ticle size ratio in three dimensions, where small particles
percolate through the pore space of the larger particles,
for low enough concentration in small particles~so that a
macroscopic segregation has to take place!. It is obvious that
in such a case, the mean density of the packing has no ph
cal meaning. This case is, however, amenable to a sim
treatment, because the pressure supported by the small
ticles is simply null. Thus we are again facing an effecti
problem similar to that of a monosize packing. The critic
concentration below which a segregation takes place
been studied in detail in particular by Oger@23#.

Numerous studies have shown in the past that segrega
of particles according to their size could take place un
different conditions ~vibration, large steady deformation
heap formed by feeding at a fixed position, etc.! ~see, e.g.,
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Ref. @24# for a review!. These conditions obviously violat
the homogeneity requirement needed to apply the above
sented analysis.

V. CONCLUSION

We have shown in this paper that the notion of par
pressure supported by a specific granulometric class ca
defined and that it is dependent on granulometric classes
value can be related to the dependence of the packing de
on the particle diameter. The latter property can be expres
in geometrical terms.

In the particular case of a bimodal distribution, our ana
sis has shown a significant difference between two and th
dimensions, and this point is to be underlined in a cont
where a number of numerical studies are performed in
dimensions and extrapolated to three. The role of dimens
ality is obvious in terms of geometry~e.g., static segregatio
cannot take place in two dimensions!, and the relation be-
tween partial pressures and solid fraction underlines th
similar role of dimensionality is to be expected in the cor
lation between contact forces and particle size.

ACKNOWLEDGMENTS

We thank H. J. Herrmann and S. Luding for their M
computer code, which was used as a basis for the progr
used in this article. This work is partly supported by t
Groupement de RecherchePhysique des Milieux He´téro-
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APPENDIX

The densityc of the packing as a function of the gran
lometry is given in Eq.~16!. Here, we give the explicit equa
tions used to obtain the differential density]c/]a:

]c

]a
5

1

D

]H

]a
2

H

D2

]D

]a
, ~A1!

where

]H

]a
53F f x̄1

2
] x̄1

] a
1~12 f ! x̄2

2
] x̄2
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G ,
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]D

]a
53~12 f !~x221!2

] x̄2

]a
1

3

h

3F f ~ x̄111!2
] x̄1

]a
1~12 f !@~x211!22~ x̄221!2#

] x̄2

]a
G

2
1

h2 @ f ~ x̄111!31~12 f !@~x211!32~ x̄221!3!#
]h

]a
,

]h

]a
5

k

B F]A

]a
2

A

B

]B

]aG , ~A2!

and

k5
4~8co21!

13
,

A5 f ~ x̄111!2S 12
3

8

1

x̄111
D 1~12 f !~ x̄211!2

3S 12
3

8

1

x̄211
D ,

]A

]a
5 f S 2~ x̄111!2

3

8D ] x̄1

]a
1~12 f !S 2~ x̄211!2

3

8D ] x̄2

]a
,

B5 f x̄1
31~12 f !@ x̄2

32~ x̄221!3#,

]B

]a
53F f x1

2
] x̄1

]a
1~12 f !@ x̄2

22~x221!2#
] x̄2

]a
G .

~A3!

Note

] x̄1

]a
5 x̄21a

] x̄2

]a
,

~A4!

] x̄2

]a
52 f x̄2

2.

We then deduce the partial pressures^p(x1)& and ^p(x2)&,
and the parameterb from Eqs.~14! and ~15!, respectively,
using the above formula.
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