PHYSICAL REVIEW E VOLUME 57, NUMBER 4 APRIL 1998

“Partial pressures” supported by granulometric classes in polydisperse granular media
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A packing of particles subjected to an cedometric compression displays a large distribution of inter-
particle contact forces. The latters are correlated with the particle size. Using the principle of virtual work,
we relate the “partial” pressure supported by a granulometric class of particles to a purely geometrical
problem, namely, the solid fraction of a polydisperse granular medium as a function of its granulometry. We
apply in particular this result to the case of bimodal packings and we show that the partial pressure is larger for
the small particles in three dimensions, whereas a size independence is predicted in two dimensions. Two- and
three-dimensional numerical simulations confirm these re§@t063-651X98)07304-9

PACS numbg(s): 83.70.Fn, 01.55:b, 07.05.Fb, 46.16-z

[. INTRODUCTION of external pressures applied on each sample, we numerically
determine the solid fraction, the coordination number, the
Photoelastic visualizations of two-dimensiof2D) [1-3] mean normal force of one contact on a grain, and the partial
and three-dimensional3D) [4] granular systems provide Pressures supported by the granulometric classes. We com-
striking evidence of the heterogeneous distribution of inter{are the theoretical prediction with these numerically deter-
granular stresses in a granular system on a scale definitefpined results. The range of external pressures is chosen so
larger than the typical particle siz&—7]. This motivated that the density of the packing varies by about 6.5%.
some recent works devoted to the analysis of the statistical IN Sec. Il, we introduce the theoretical model and we
distribution of interparticle force§7—12). Apart from this  Present the predicted results on the partial pressures in par-
basic level of description, the statistical correlation of thesdicular for bidisperse packings; in Sec. Ill, we briefly present
forces in the medium still requires a detailed analysis. Wehe simulation method and we compare the numerical results
present a Step in this direction, from the ana|ysis of the CorWith those of the theoretical mOdeI; in Sec. IV, we discuss
relation between the force at a contact and the particle siz¢he limits of the model.
It is of uttermost importance to have a faithful description
of this geometrical organization for processes like particle Il. THEORETICAL MODEL
fragmentation. Indeed, it is well known that a small amount
of recycling of small particles in a crushing device leads to
an increased efficiency of crushing. Although this questionis Let us consider a packing dfi spherical or cylindrical
directly related to the local stress distribution around the pargrains with a statistical distributiori(x), such thatNf(x)dx
ticle, no satisfactory understanding is yet available on thigs the number of particles whose diameter lies in the range
point and the recycling rate is based on empirical rules.  [x,x+dx]. The packing is supposed dense with a spatial
In this paper we are particularly interested by the localhomogeneous distribution of particles.
pressures supported by the particles within a polydisperse \ye introduce the mean particle volurae
packing. One interesting question is how these local pres-
sures depend on the grain sizes when external forces are — ? 4
applied. Assuming that each contact force is identical to all v="3y fo X (x)dx, @)
others, Helleet al. [13] used the principle of virtual work to
determine t_he average contact force between_ ide”tic%heresd is the volume of a unit diameter spheredimen-
spheres subj_ect_ed to a remote pressure as a fur_1ct|0n of th%'i%ns, i.e.S,= /4 andS,= /6.
mean coordination number, and relative density. From a \ye take an interest in the mean press(partial pres-

similar principle,.we develop a theoretical modéH] that _sure, {p(x)), supported by a grain of diameterwhen ex-
relates the “partial” pressures supported by granulometnc[emal forces are applied on the packifig(x)) is defined as

cAaszes of particles ;Or? pur?.lé/ fgeor_netrical p;oble_m, na:cmﬁly[he ratio of the sum of normal contact forces on the particles
the determination of the solid fraction as a function of t €of diameterx, divided by their areas,

granulometry. As a side product, it allows us to deduce the

A. Description

mean normal force of one contact on a grain as a function of
the external pressure and the mean coordination number. <E Fini>

In order to validate this theoretical model, two- and three- (p(x))= , 2
dimensional numerical simulations based on molecular dy- Adxd‘1

namics(MD) method with elastic interactions between the
grains have been performed for various combinations ofwhereF; is the contact force at point n; the external nor-
grain sizes and granulometric class proportions. For a rang@al at this point, and\4 the area of a unit diameter sphere in
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d dimensionsA,=Az;= . Note thatA;=2dS;. The sum w0 v sc
between angular brackets is applied on all contacté a ,8=J’ 1- - ——|f(x)dx. (11
particle of diametex, and the angular brackets represent an 0 € Sv(x)

average on all such particles. Note that, for the monodisperse packingsQ orf=1), we

In order_to _have access to this partial press{_tpr(eQ), W€ have sc/ 57(x)=0 and 8=1; thus we recover the relation
use the principle of virtual work. Let us imagine an infini- proposed by Hellet al. [13],

tesimal virtual transformation such that tNeSf(x) particles
of diameterx are dilated to a diameter+ 8x. The internal (XY ) Pey
virtual work 6W, of the contact forces on these particles is (Fn)= nc '
expressed as

(12

These results relate the partial pressure supported by a granu-
SW,=SyN 5f(x)(p(x)>xd‘15x. 3 lometric class of particles to a purely geometrical problem,
i.e., the change of solid fraction as a function of an infini-
In this transformation, the global packing volume expandgesimal transformation.
by 6V and the workéW, of the external pressurB., is

given by B. Particular case of a bimodal distribution
SWe= P, dV. (4) In order to illustrate the preceding results, we consider the
case of a bimodal distribution whexeonly takes two values
The packing volume is X1 andx,. We definea=x, /x, with the conventiory<1.
- Let f,=f the numerical proportion of small graifdiam-
Nv eter x4), and thereforef,=1—f the proportion of large
V=, (5 grains. In the present case, the solid fraction is defined as a
function of the size ratiax and the numerical proportiofy
wherec is the density of the packing. We introduce here an c=u(f,a) (13)
essential hypothesis: the solid fraction is assumed to be a y(f.a),
known functional of the granulometric distribution, i.e., ¢ depends only of size ratio and not absolute sizes.
Hence, the application of preceding results on the partial
c=C[f]. (6) pressures leads to the following expressions,
Thus the virtual transformation previously introduced (p(x1)) 1 av I
leads to a variationsc of density obtained from the above P e mﬁ_ﬁf ;
functional. We do not present here any new results on the ext !
c_iensny calculation but rather refer to previous studies of the (p(X2)) av o
literature[15-17. 5 ==\ 1+———ag——/. (14
By differentiation, we obtain the global volume variation, e C cdgxp(1—1) da
- and
Nv/ dv(x) &c
N=—| =7/ 7 1. a(ad=1)[f+(1-f)a"] dlogy 15
g p= d da (15
where These expressions can be simplified when we introduce the

volume fractions¢=fSyx$/v for the small grains and (1
—¢) for the large ones.

From now on, we must argue differently depending on the
spatial dimensiord of the system.

As a matter of fact, the density of three-dimensional bi-

Sv(x)=dSxd1ox5f . (8)

The principle of virtual work allows us to write the equal-
ity 6W;=6W, and we obtain the following key result:

(p(x)) 1 7 s modal_systems d_epends crucially of the _size ratio gnd the
P ol =) 9 numerical proportion of each granulometric class. Givgn
et C € v(x) the density as a function of the proportiéngenerally dis-

plays a sharp maximum for an optimal proportibh(«)

where the left-hand sidghs) contains the partial pressure we with a kink near of this maximum. Decreasing the ratio

wanted to compute whereas the right-hand €id®) is @ i maximum increasegecall thata<1 conventionally.

purlfly ge(r)]metrlcal qluantltly. iiv ded h This behavior is bounded by>«, where a.~1/6 is the
rom this general result, we can easlly deduce the meaiyyico| ratio above which the small grains can fit inside the

normal force(F,) of one contact applied on a grain of the o\ tormed by three large grains in contact. In this case, a

packing, segregatiortakes place when the proportidrbecomes less
Ag(x3~ 1P than the minimum required for filling the pore space of the
(Fpy= df‘mlg, (10) large particles. Thus, as long as> a., di¢/da is negative
nc and the paramete8>1. We deduce thdisee Eq.(14)] the

. smaller grains support a higher pressure than the larger ones
wheren is the mean coordination number and in three dimensions.
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In two dimensions, the situation is very different. Experi- bution of particle sizef(x). Being general, this model can
mental result§17,18 provide evidence for a quasiconstant be used to the particular case of a bimodal distribution. The
density as a function of the ratie and the compositiori.  principle of this model is based on a geometrical self-
Thereforedy/ da~0 andB— 1, from what we deduce that consistent computation. It provides a good approximation as
the partial pressure are equal for both types of particles, i.ejong as there is nanacropore— i.e., pore spaces whose

(P(x1)) =(P(X2)) = Pex/C. sizes are larger than the mean particle diameter— in the
packing. The hypothesis and calculations are detailed in the
C. Application using Ouchiyama-Tanaka model original referencg16].

Ouchiyama and Tanaka have developed a purely theoret- We use this model to predict the evolution of pa'rtial pres-
ical model predicting the density of three-dimensional poly-Sures as a fungtlon oflthe granullometry'. In Fhe 'partlcular case
disperse granular media as a function of the statistical distriof @ bimodal distribution the solid fraction is given by

fx 3+ (1—f)x,3

(1=H =13+ (U F(xe+ 1%+ (1= H[(x2+ 1)~ (x2—1)°]]
with
4 f(x+ 1) 1—2 Ux;+1)]+(1—F)(xo+ 1) 1—2 1U(x,+1)]
7=1+ 15(8Co—1)— —— — = 7
13 fx 2+ (1= )%= (x,= 1)°]
|
wherec, is the density of a random monodisperse packing in . NUMERICAL SIMULATIONS

three dimensions, and A. Simulation method

We have partially checked these theoretical predictions on
— X a the bimodal packings of grains under an cedometric compres-
Xl_@_ af+(1-1)’ sion, using numerical simulations.
The computer simulations are performed using a molecu-
lar dynamicgMD) algorithm[19,20. A detailed description
— Xy 1 of the MD method can be found in the literaty@d,22. We
XZZQ = m (18) specify a model for the contact forces between grains includ-
ing dry friction as detailed below. We use a fifth order
predictor-corrector algorithm for the integration of the New-
From this model, the density variatiofx//da and the tonian equations of motion, for the velocity and rotation of
parameter3 appearing, respectively, in Eg&l4) and (15) each particle. A simple disk or sphere geometry was assumed
can be found using Eq$16) and(17) and are given in Ap- in two and three dimensions, respectively.
pendix A. Givene, this model leads to the theoretical deter-
mination of the partial pressuregp(x;))/Pey and
(P(x2) )} Pey as a function of the numerical proportidn
Figure 1 shows an example of the predicted partial pres-
sures in a packing combining our model with the
Ouchiyama-Tanaka density prediction. Giver=1/3 and
co=0.64, this figure shows the variations of the density
the partial pressure®(x,) )/ Pey; and(p(X,))/Pey, and the
parameterg and — di/da as a function of volume fraction

o ratio <p(x,)>/P_,
® ratio <p(x,)>/P_,
© parameter 3

A density ¢

* —oy/do

& of small grains. Loy
We note in this figure that the solid fraction presents a Looceoss
smooth maximum for a small particle volume fraction close 05 -
to 0.2, but a rather small overall variation. A similar shape 2z
albeit with larger variations is obtained for the derivative of 0.0 < : : ‘ ‘
0.0 0.2 0.4 0.6 0.8 1.0

this density with respect te. The relative partial pressures
decrease significantly for a small volume fractiérbefore

reaching a plateau value fdr larger than 0.2 and 0.5 for FIG. 1. Variations of the densitg (A), the partial pressures

(p(x2)) and{p(x,)), respectively. This plateau can be Un- (p(x,))/Pey (O) and(p(X,))/Pey (@), and the parameters ()
derstood as resulting from the weak sensitivity of the densityand — 9y/da (*) as a function of the volume fractiog of small

on the small particle volume fraction. grains as computed from the Ouchiyama-Tanaka model.

small particle volume fraction &
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TABLE I. Numerical proportionf, size ratioa, mean coordina-

tion numbern_, and solid fractiorc in our sample#A, B, C, D, E,
andF before the reloading of the systeR4~0).

Sample(dimension f a n c
A(d=2) 72.9% 0.40 3.71 0.839
B(d=2) 69.2% 0.60 3.64 0.828
C(d=2) 85.5% 0.40 3.53 0.834
D(d=3) 88.0% 050  6.47  0.660
E(d=3) 94.9% 0.50 6.53 0.652
F(d=3) 96.4% 0.33 6.48 0.675

In MD simulations contact forces are at play only when
particles overlap. For two grainsandj of respective diam-
eterx; and x; in contact, we assume the normal repulsive
contact forcgF J-| due to the elastic deformation as directly
proportional to the overlagj; between two grains as

|Felijl =Y X065 , (19

where X, =x;x;/(x;+X;) is the reduced diameter and is

the Young modulus and which is chosen large enough so tha

the overlap is always a small fraction of the grain diameter.
The elastic deformation of the particles is assumed to be

supplemented by siscousdamping forceF jiss;; (related to

the coefficient of restitution which is chosen as

Faissjj= — My ¥Ynln (20

where the reduced mass,=mm;/(m;+m;), v, is a phe-

nomenological damping constant, anglthe normal relative FIG. 2. Geometry of the two-dimensional packife and the
velocity between two particles. Thus the normal force isthree-dimensional packin¢) used in the numerical simulations.
given asF, jj=Fejj + Fissjj - Lateral boundary conditions are periodic.

Tangential(frictional) force Fyion,j IS taken to be pro- Disks (or spheresare enclosed by a fixed bottom plane

portional to the extension of a tangential spriqagas long as : ; . .
the magnitude of that spring force does not exceed the fricf'_:md a top horizontal plane where the vertical displacement is

tion coefficientu times the normal force. Above this thresh- imposed. Lateral boundary conditions are periodic, and thus

o o ._ the macroscopic strain is simply a uniaxial compression
old, a Coulomb friction law is invoked, and the tangential X ) .
force remains constant at the value 9 (cedometric compressinnFigures 2a) and Zb) show, re-

spectively, the two- and three-dimensional simulation geom-

Frction,ij = — SN 8s)min(k,8s, uF i}, (22) etry. This geomgtry guarantees' the absence of lateral frictic_)n.

‘ ’ The construction of the packings takes place under gravity

whereés is the shear displacement integrated over the entir@nd we add a small random perturbation on the radii to avoid

contact time. In the simulations performed for this study, thecrystallization. We make sure that the constructed packings

coefficient of interparticle friction was chosen at a fixed are dense with a spatial homogeneous distribution of par-
value of »=0.3. We also included a shear dynamic friction ticles. A first external pressur.,; is applied on the system

force, which in its simplest form can be chosen as to achieve the consolidation phase. After unloading the sys-
tem, we again apply a progressive load on top of the sample
Fshearij = — Mn YVt (22 and we measure the density, the coordination number, the

mean normal contact force, and the partial pressures sup-
where y, is the shear dynamic friction coefficient andis  ported by the two granulometric classes. Table | shows the
the tangential relative velocity between the two particlesquantities of the mean coordination number and the solid
This force acts as a viscous damping on the absolute rotdraction inside each sample before the reloading of the sys-
tional velocities of the particles. tem (Po~0). In order to preserve particle shapes, we have

This program has been used to simulate the quasistatignly retained the results with low values of global strain.
evolution of an assembly. The simulated experiments were

performed on packings of 700 disks in two dimensions and B. Numerical results
1000 spheres in three dimensions. All these packings have a
bimodal size distribution. Six samples of various combina-
tions of grain sizes and granulometric class proportions are We first present the results obtained in two-dimensional
presented in Table I. samples. Figure 3 shows the products of partial pressures by

1. Two-dimensional packings
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FIG. 3. Variations of the products of partial pressures by the
solid fraction{p,)c and{p,)c as a function of external pressure
Pey applied on the granular samplésandB in two dimensions.
The dotted line is the theoretical prediction.

FIG. 5. Variations of the products of partial pressures by the
solid fraction{p,)c and{p,)c as a function of external pressure
P applied on the granular samgle (three dimensions The dot-
ted lines are theoretical predictions using the Ouchiyama-Tanaka

. . density model.
the density(p(x,))c and(p(x,))c as a function of external

pressureP,,; applied on the granular samplasB, andC. In

this two-dimensional case we observe these quantities afgnction of the ratio of external pressuRg,; on the density

approximately equal to the external pressBgg,. As antici-  ¢. This figure shows that the slope of the regression through

pated from the theoretical model in two dimensions we findthe data points tends to B—1, in agreement with the the-

dylda~0. Note that, however, the density of the packingoretical prediction(dashed line in Fig. %

varies by about 6.5% for the range of external pressures These figures show that the theoretical predictions com-

presented here. pare well with the numerically determined results. They con-
We measure the mean normal fokde,) contact on each firm the independence of partial pressures with the particle

granular systenfall classes included The previous theoret- sjze.

ical analysis leads to

_ Ax(X)Pey 2. In three-dimensional packings

(Fm= nc ' (23 Similar analysis has been performed on three-dimensional
packings. We numerically determined the density, the coor-
whereA,= 7 and 83— 1. dination number, the mean normal force at contact points,

Figure 4 shows the variation of the product of the mearA"d the partial pressures supported by the granulometric
normal contact forcgF,)) by the coordination numben classes. These quantities are compared to the theoretical pre-

. i i — dictions. In Fig. 5 we present the products of the partial
divided by the mean particle perimet€F.yn/7(x) as a pressures and the solid fractiép(x,))c and{p(xp))c as a

function of external pressurP.,; applied on the granular

600 sampleD. Contrary to two-dimensional packingsee Fig. 3
o we observe that smaller grains support a higher pressure than
00 1 e the larger ones in three dimensions. This shows that the par-
T - 1 tial pressures increase with the external pres8yteas pre-
§ 400 1 ot | dicted in Eq.(14). The same observation holds as well for
e 300 % A the other tested samplés and F. On this graph, we also
\z display the prediction obtained from the Ouchiyama-Tanaka
® - model, combined with our analysis. We note a good agree-
ws 20.0 - o @ Sample A ) Sl
Y o’ = Sample B ment for weak external pressures and a slight deviation for
100 3 A Sample C | stronger external pressures. This discrepancy between the
s -~ Theoretical prediction theoretical model and the data points may be a consequence
L ‘ ‘ . ‘ of the geometrical variations within the samples during the
0‘00.0 10,0 200 300 400 500 60.0 compression, i.e., the establishment of new interparticle con-
P_/c (N/mm) tacts between grains by local slidings and rollings, and the

increase of the density. In fact, the combination of our model
FIG. 4. Variations of the product of the mean normal fofEg)  with the Ouchiyama-Tanaka density prediction does not al-
contact by the coordination numberdivided by the mean particle low one to account for these variations and considers the
perimeter F,)n/m(x) as a function of the ratio of external pressure geometrical structure of the packing as invariant during the
Pex OVer the densityc (two dimensions The dotted line is the compression.
theoretical prediction using=1. The mean normal forcéF,) was predicted to amount to
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60.0 : ‘ ' \ T3 tained results are quite satisfactory.
”‘ The above point is pragmatic, and does not answer the
50.0 y 1 guestion of why this agreement is so good in a problem

”/ where one might not have expected such an approach to be
1 applicable. We think that the key has to reside in the order of

magnitude of the effects that are expected. The solid fraction

of a granular media with a prescribed granulometry is not

~

[ew]

o
\
N\

»

n<F,>/m<x"> (N/mm’)
)
o
o

® Sample D unique. However, what is much better defined is the solid
20.0 &« ® Sample E | X ; :
A Sample F fraction after a large shear deformation has been imposed to
100 | ."F‘ -~ prediction on the sample D the system, starting from a loose sample so that localization
' ~ - prediction onthe sample £ ] effects are avoided. It is quite widely accepted that in this
—- prediction on the sample F Y " .

0.0 . , . ‘ ‘ case the system reaches the so-called “critical state,” which
700 100 200 300 400 500 600 is independent of the sample preparation. The solid fraction
P, Jc (N/mm’) of the system at the critical state is dependent on the confin-

ing pressure for deformable particlés.g., for clays but

FIG. 6. Variations of the product of the mean normal fofEg)  almost not for stiff particlege.g., sanfi(and when no plastic
contact by the coordination numberdivided by the mean particle deformation, or breaking occursin this case, the typical
area<Fn>n_/77-<x2> as a function of the ratio of external presserg; reproducibility of the solid fraction is less than 1%. It is
over the density (three dimensions The dotted lines are theoret- Within this framework that the Ouchiyama-Tanaka model
ical predictions using the Ouchiyama-Tanaka density model. should be considered. Nevertheless, due to the approximate
nature of the model, the agreement with experimentally de-
termined compacities is generally worse than 1% error.

@29: Pext (24)  Therefore at the level of accuracy of the modeling, the criti-
mXx) ¢ cal state solid fraction can be considered as uniquely defined.

Similarly, in the numerical simulations, we performed a first

Figure 6 is a direct check of this equation, showing the grapltompaction whose aim is to get closer to the critical state,
of the Ihs of the above equation as a function of the ratio ofand to erase most of the sensitivity to the initial state, or the
external pressure on the density. We first observe that thgreparation conditions. We checked numerically that sample
graph is indeed linear, and second, from a global point oto sample fluctuations were indeed small. On the other hand,
view, the slopeB as predicted by the Ouchiyama-Tanakaas the size ratio of a binary mixture is varied, extremely large
model(shown as a dotted line on the gramimovides a good changes of solid fraction are expected. This goes well be-
description of the numerical data points. In contrast to two+yond the history dependent effect.
dimensional packings3 is always greater than 1 and dis- For monosize packings in two dimensions, it is well
plays a rather weak dependence on the particle size ratio arkthown that a granular packing of disks has a tendency to
the geometrical variations during the compression. crystallize into a regular hexagonal array. A slight perturba-
tion leads to the formation of “crystals” of large sizes lim-
ited by “grain boundaries.” In this case, it appears in our
numerical simulations that the density is a rapidly changing

The limitation of our model is due to the hypothesis thatfunction of the size ratio and the small particle volume frac-
the solid fraction of the piling is uniquely determined by the tion when the latter approaches either 0 ord+1). This
granulometry. This in fact can only be regarded as an apeontrasts with the general case where the density showed
proximation, since the granulometry alone does not suffice tdittle evolution with the particle size rati@.e., dy/da~0).
determine a solid fraction. Indeed it is well known that underWe did not investigate this case in great detail because of the
vibration, a given medium can be compacted by typically avery large sensitivity of the results on the system s$inem-
few percent under optimal conditions. Therefore the menber of particleg due to the large size of the “monocrystals.”
tioned functional’ [see Eq(6)] simply does not exist, since Another case that is also ill behaved concerns large par-
the density depends as well on the sample history. ticle size ratio in three dimensions, where small particles can

We are not aware of a more refined theory that allows ongercolate through the pore space of the larger particles, and
to incorporate such a history. In view of the possible defi-for low enough concentration in small particléso that a
ciency of this method, and of the approximate nature of thenacroscopic segregation has to take plattés obvious that
packing model(Ouchiyama-Tanaka thegrywe performed in such a case, the mean density of the packing has no physi-
numerical simulations using a tool that has been extensivelgal meaning. This case is, however, amenable to a similar
checked over the past 10 years, and that is able to reproduteatment, because the pressure supported by the small par-
realistic stress-strain behavior. The very good agreement béicles is simply null. Thus we are again facing an effective
tween the predicted partial pressybased on our result and problem similar to that of a monosize packing. The critical
Ouchiyama-Tanaka theory, and which does not include angoncentration below which a segregation takes place has
free parametejsand the numerically determined pressuresbeen studied in detail in particular by Odes3].
was enough for us to consider the result as valuable. Al- Numerous studies have shown in the past that segregation
though we agree that the final predictions cannot be considbf particles according to their size could take place under
ered as an exact resulit cannot be more exact than the different conditions(vibration, large steady deformation,
Ouchiyama-Tanaka theory itsglfit turns out that the ob- heap formed by feeding at a fixed position, eisee, e.g.,

IV. DISCUSSION
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Ref. [24] for a review. These conditions obviously violate ;p _ ix, 3
the homogeneity requirement needed to apply the above pre— =3(1—f)(x,—1)2— + —
sented analysis. da da 7

—_ 219)(_1 o 2 . 2 &XZ
V. CONCLUSION X | f(x,+1) £+(1—f)[(x2+1) —(X,—1) ]E

We have shown in this paper that the notion of partial 1 P
pressure supported by a specific granulometric class can be  _ —z[f(X_1+ 1)3+(1—f)[(§2+1)3—(x_2—1)3)]—77,
defined and that it is dependent on granulometric classes. Its n da
value can be related to the dependence of the packing density

on the particle diameter. The latter property can be expressed ‘9_77 _K % _ ﬁ @ (A2)
in geometrical terms. da B|da B dal
In the particular case of a bimodal distribution, our analy-
sis has shown a significant difference between two and three
dimensions, and this point is to be underlined in a context 4(8c,— 1)
where a number of numerical studies are performed in two K=—"7"3
dimensions and extrapolated to three. The role of dimension-
ality is obvious in terms of geometifg.g., static segregation — ) 3 1 — )
cannot take place in two dimensionsind the relation be- A=T0q+D% 1- 5= +(1-H(xx+1)
. ; . . X,+1
tween partial pressures and solid fraction underlines that a
similar role of dimensionality is to be expected in the corre- 3 1
lation between contact forces and particle size. S 8T :
X,+1
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APPENDIX (A3)
The densityc of the packing as a function of the granu- Note
lometry is given in Eq(16). Here, we give the explicit equa- _ _
tions used to obtain the differential density/da: Xy —  dXp
a2 %
dp 1oH H oD (A4)
da D da DZ?da’ (AD) 9%, —
- = fX22.
where da
— — We then deduce the partial pressute$x,)) and{p(x,)),
ﬁ:3 fx—lzﬁJr(l_f)x—Zz& ’ an_d the paramete from Eqgs.(14) and (15), respectively,
da Jda da using the above formula.
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